Answers Week 10

Mechanical System: (i) Pull mass to A, store potential energy $\frac{1}{2}k\,A^2$. (ii) Release mass, it will reduce its potential energy until x=0, when all the energy is kinetic. (iii) It will use its kinetic energy to go to x=-A where Energy is again all potential. Hence oscillation occurs with $x=A\cos\omega t$, $\omega=\sqrt{\frac{k}{M}}$

Electrical System: (i) Charge capacitor, store energy $\frac{Q^2}{2C}$ in \underline{E} - field. (ii) Open S₁, close S₂. Capacitor sets up current in L, \underline{E} - field in C collapses all the energy is in the \underline{B} field in L. (iii) Current through L recharges C until $\underline{B} \to 0$. Hence, charge oscillation occurs

$$q = Q \cos \omega t$$
, $\omega = \frac{1}{\sqrt{LC}}$

- 10-3 (i) If current increases by a factor of 2, X is a capacitor because $i_c = \varepsilon_m W C \cos \omega t$
 - (ii) If current reduces by a factor of 2, X is an inductor because $i_c = -\frac{\mathcal{E}_m}{WL} Cos \omega t$.
- <u>10-5</u> (155 163) V
- 10-7 $C = 5.31 \times 10^{-8} \text{ F}$
- 10-9 Power $P_w(t) = i(t) \varepsilon(t)$ $= i_m \varepsilon_m \left[Sin^2 \omega t Cos \phi + Sin \omega t Cos \omega t Sin \phi \right]$ $<(P_w) > = \frac{i_m \varepsilon_m}{2} Cos \phi = \frac{\varepsilon_m^2}{2Z} Cos \phi = \frac{\varepsilon_m^2}{2R} Cos^2 \phi$ Because $Cos \phi = \frac{R}{Z}$